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The choice of truncated basis sets and their optimization for MBPT calcula- 
tions of molecular  propert ies  are discussed. It  is pointed out that computing 
the correlation corrections to some kth order proper ty  by using the M B P T  
approach requires the knowledge of accurate per turbed orbitals through the 
kth order. Hence,  it is argued that the basis set functions can be optimized 
with respect to the per turbed energies calculated within the coupled H a r t r e e -  
Fock method.  The proposed procedure is illustrated by M B P T  calculations 
of quadrupole  moments  of H2 and FH.  Additionally, also some estimates of 
the quadrupole polarizability tensor components  for these molecules are 
obtained. 
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1. Introduction 

In most  cases fairly accurate results for atomic and molecular  propert ies  [1] can 
be obtained within the SCF HF approximation.  However ,  in order to exploit 
the predictive power  of quantum mechanical  calculations a careful consideration 
of the electron correlation effects is unavoidable. Recent  studies of the electron 
correlation contribution to propert ies  of many-elect ron systems have shown that 
the genuine correlation effects [2] can be accounted for by using relatively simple 
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methods [2-7]. Among them the many-body perturbation theory (MBPT) 
approach [8], based on what is known as the coupled Hartree-Fock (CHF) 
[9, 10] solutions for the perturbed one-electron problem [2], has been found 
particularly convenient [2, 3]. Considerable attention has been given to the 
CHF-based MBPT scheme restricted to the intermediate states which result 
from single (S) and double (D) substitutions (SD-MBPT) in the reference 
function [11, 12]. Recent calculations [12-14] seem to indicate that the CHF- 
based SD-MBPT approach is capable of yielding the major part of the correlation 
contribution to different properties of many-electron systems. 

Most calculations of the electron correlation contribution to atomic and molecular 
properties are carried out within the algebraic approximation, i.e. by using some 
truncated set of one-electron functions. The choice of the basis set is of principal 
importance and to a large extent determines the accuracy of the final results. 
The calculation of correlation corrections to the SCF HF (CHF) values of atomic 
and molecular properties imposes certain specific requirements with regard to 
the basis set composition. 

In the present paper the basis set composition is analysed in terms of the structure 
of the MBPT correlation corrections to properties and a method for the basis 
set optimization is proposed. This method is utilized for the optimization of basis 
sets in accurate MBPT calculations of molecular quadrupole moments. The 
calculations are carried out by using the finite-field perturbation theory (FPT) 
approach. 

2. Correlation Corrections to Properties of Many-Electron Systems. 
Requirements Concerning the Basis Set Composition 

The present paper forms a part of the project aimed at a systematic determination 
of basis sets suitable for highly accurate calculations of molecular quadrupole 
moments. The analysis of the basis set problem in calculations of correlation 
corrections to properties is most conveniently carried out by invoking the relevant 
expressions of the CHF-based MBPT formalism [2, 3, 12]. The nth order correla- 
tion correction Q, to some kth order property Q can be defined as a quantity 
proportional to the kth order derivative of the/z-dependent nth order correlation 
energy E~ (~): 

(2,, ~E~ k~ 1 [OkE~(~)~ = - -  ~ , (1) 
k!\  a/z ).=0 

where /z is the strength of the external perturbation pertinent for the given 
property (2 [1], and E ~  ) is the perturbed energy of the (k, n)th order. By virtue 
of using the /z-dependent SCF HF orbitals in what is called the Ct-IF-based 
MBPT approach [2, 3], the correlation perturbation series for the total correlation 
correction (2~orr to the property (2 begins with the second-order term, i.e. 

O . . . .  = Q 2  -4- ( 2 3  -q- ( 2 4  -{-" �9 �9 �9 (2) 
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The differentiation of the/x-dependent correlation energy formulae [2, 3] shows 
that the correlation corrections to the kth order property will involve the 
perturbed CHF orbitals through the kth order with respect to the external 
perturbation strength. Hence, for the accurate calculation of E (f) one needs to 
know the accurate perturbed CHF functions for both the occupied and virtual 
orbitals which enter the correlation energy expressions [15]. 

In general there are no variational bounds available for separate contributions 
Q, to the total correlation correction Q ..... Hence, the optimization of basis set 
functions can hardly be accomplished with respect to Qn and it appears that the 
best one can do is to use the most accurate perturbed CHF orbitals [9, 10]. It 
is proposed therefore that the optimization of basis set functions should be 
carried out with respect to the perturbed CHF energies. Obviously, this procedure 
will mainly affect the basis set functions which contribute mostly to the occupied 
SCF HF orbitals and the CHF perturbation corrections to virtual orbitals will 
come out as a by-product of the CHF procedure [9]. This limitation of the 
procedure suggested in this paper can be removed to some extent when using 
the multi-configuration (MC) reference functions in the MBPT approach [16] 
with the perturbed single-particle states determined according to the MC-CHF 
perturbation scheme [17]. However, there are some indications [18, 19] that the 
contribution of the perturbed SCF HF virtual orbitals to the correlation correc- 
tions Qn is of secondary importance compared to that which follows from the 
perturbed occupied SCF HF states. 

In spite of its incapability to yield optimized virtual orbitals the CHF approach 
gives at least some idea about the general requirements concerning the basis set 
composition. Consider for example a many-electron system whose reasonable 
description of the SCF HF level of accuracy can be achieved by using a basis 
set involving atomic functions with the highest value of the angular momentum 
quantum number equal to I. Let the external perturbation be expressible in 
terms of the L-pole moment one-electron operators [1]. Then the minimum 
requirement concerning the basis set composition for the calculation of Q, leads 
to the conclusion that the initial basis set has to be augmented by atomic functions 
with the angular momentum quantum numbers through l + k x L. Hence, if the 
(s, p) basis set is sufficient at the SCF HF level of accuracy for the unperturbed 
system, the calculation of correlation corrections to the quadrupole moment 
requires the use of a (s, p, d, f) basis set. 

For obvious reasons the basis set size has to be kept as small as possible and 
this can be achieved either by making the given basis set explicitly dependent 
on the perturbation strength [20, 21] or by optimizing a few higher angular 
momentum functions. In the case of correlation corrections to quadrupole 
moments the use of appropriate field-gradient-dependent basis sets [21] requires 
the calculation of non-standard eliptic integrals. For this reason standard per- 
turbation-independent basis sets appear to be preferable. Their optimization is 
to be carried out via the optimization of orbital exponents with respect to the 
perturbed CHF energies. Moreover, the optimization should be principally 
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performed for those atomic functions which are expected to give a dominant 
contribution to the perturbed CHF orbitals of a given order. 

3. Basis Set Optimization for Molecular Quadrupole Moments 

The quadrupole moment tensor 0~ can be regarded as the first-order electric 
property which arises from the field-gradient perturbation [1]. Since the truncated 
MBPT expansion violates the Hellmann-Feynman theorem [22] the correspond- 
ing calculation of correlation corrections to the SCF HF values of 0.v requires 
both the unperturbed SCF HF and the first-order perturbed CHF orbitals. The 
latter follow from the consideration of the one-electron perturbation operator [1]: 

= g ( 3 x . x v  - 8 .~r  2) (3) 

and the minimization of the corresponding second-order perturbed CHF energy 
t7 (27 is proportional to --.v,.~F(Z)'CHF [9, 10]. The second-order perturbed energy _ .~ ,~  

the diagonal (tz~,/xt,) component of the quadrupole polarizability tensor C.~,.~ 
[1, 23]. The corresponding definitions follow those of Buckingham [1]. A useful 
summary of different definitions of the quadrupole moment and quadrupole 
polarizability tensors has recently been given by Rivail and Cartier [23]. 

The calculations reported in this paper have been carried out for H2 and FH. 
First, the hydrogen atom GTO/CGTO basis set has been partly optimized with 
respect to the quadrupole polarizability of the hydrogen molecule. The initial 
(7s2p) GTO basis set derived from the (6s) GTO set of Huzinaga [24] and 
augmented with two p-type GTO's with orbital exponents selected according to 
Werner and Meyer [4] has been contracted to the [4s2p] CGTO set and further 
augmented with a single d-type GTO. Since the SCF HF orbital of H2 is mainly 
composed of s-type atomic functions, its first-order perturbation due to the 
operator (3) will mostly involve d-type components. Hence, only the d-type 
GTO exponent has been optimized with respect to quadrupole polarizability 
tensor components. The optimization has been carried out independently for 
Cx .... and Cz ..... where the z-axis is assumed to be taken along the H - - H  bond. 
This results in two different values of the d-type GTO exponent, ~Txx (dry) = ~Tyy (dH) 
and ~Tzz (dH). The final MBPT calculations have been performed with the [4s 2p ld]  
CGTO basis set with the d-type GTO exponent taken as a simple average: 

n (dH) = ~(*/** (dH) + nyy (dH) + nz~ (du)), (4) 

and the corresponding basis set is listed in Table 1. The dependence of the 
quadrupole polarizability tensor components on the d-type GTO exponent is 
shown in Fig. 1. 

A similar procedure has been used in order to optimize the fluorine atom basis 
set for the calculation of correlation corrections to the quadrupole moment of 
FH. The hydrogen atom basis set has been taken the same as that determined 
for the hydrogen molecule. The initial ( 1 2 s 8 p 3 d )  GTO set for F is chosen 
according to the rules devised by Reinsch and Meyer [25] which are applied to 
the ( l ls7p) GTO basis set of Huzinaga [24]. This set has been contracted to 
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~l'able 1. GTO/CGTO basis sets of H and F for MBPT calculations of quadrupole moments of H2 
and FH 

CGTO H [ 7 s 2 p l d / 4 s 2 p l d ]  CGTO F [ 1 2 s 8 p 3 d l f / 8 s 5 p 3 d l f ]  

No. cl ('01) a No. ci(rll) " 

s: 1 0.023653526(68.16) s: 1 0.0049432634(37736.0) 
+0.17976680(10.2465) +0.036991691(5867.08) 
+0.86080283(2.34648) +0.19663837(1332.47) 

+0.82769142(369.441) 
2 0.39241463(0.67332) 2 0.29720969(116.843) 

+0.65630447(0.22466) +0.74248828(40.3488) 
3 1.0(0.082217) 3 1.0(14.9663) 
4 1.0(0.030338) 4 1.0(5.87593) 

5 1.0(1.65334) 
6 1.0(0.610836) 
7 1.0(0.233289) 
8 1.0(0.0933157) 

1 1.0(0.7) p: 1 0.030024639(102.2620) 
+0.21454060(23.9384) 
+0.83446861 (7.52059) 

2 1.0(0.2) 2 0.44901329(2.77246) 
+0.61160453(1.10005) 

3 1.0(0.446775) 
4 1.0(0.171870) 
5 1.0(0.0687480) 

1 1.0(0.075) b d: 1 1.0(1.64995) 
2 1.0(0.412488) 
3 1.0(0.137496) 

f: 1 1.0(0.275) c 

p: 

d: 

a Contraction coefficients (cl) and GTO exponents ('0i) 
b Average optimized value of the d-type GTO exponent obtained from Ct-IF calculations of the 
xx ,  x x  and z z ,  z z  components of the quadrupole polarizability tensor for H2. See text 
c Average optimized value of the f-type GTO exponent obtained from CHF calculations of the xx ,  x x  

and z z ,  z z  components of the quadrupole polarizability tensor for FH. See text 

the [8s5p3d] CGTO basis set and then augmented with the f-type G T O  whose 
orbital exponent  has been optimized with respect to Cx .... and Cz ..... The two 
different values of rt (fv), i.e. ~xx (fF)= rtyy(fv) and rhz (fv), have been averaged 
according to: 

r / ( fF )  = ~(nx~ (fF) + r/yy (fF) + "qzz (fF)) ,  (5) 

and the final [8s5p3dlf] CGTO basis set for the fluorine atom which is used 
in our MBPT calculations has been given in Table 1. The f-type GTO exponent 
dependence of C~ .... and C~ .... for FH is shown in Fig. 2. 

All CHF calculations reported in this paper have been carried out by using the 
FPT scheme for the field-gradient perturbation. The optimized values of orbital 
exponents have been obtained from the appropriate parabolic fits for the com- 
ponents of the quadrupole polarizability tensor. The value of the field-gradient 
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Fig. 1. SCF HF (CHF) calculations of the quadrupole polarizability tensor C~. ,~.  for the hydrogen 
molecule, Dependence of C .. . . .  and C ..... on the orbital exponent ~/(dH) of the d-type GTO for H 

strength (V,v) employed in the FPT SCF HF optimization of orbital exponents 
has been taken as equal to 0.005 a.u. for both H2 and FH. Since the SCF HF 
method satisfies the Hellmann-Feynman theorem, the accuracy of our calcula- 
tions could have been checked by comparing: (1) the average values of the 
quadrupole moment operator with the appropriate first-order derivatives of the 
field-gradient-dependent SCF energies, EScF(V,~), and (2) the first-order deriva- 
tives of the induced quadrupole moments O,~.(V,~) with the corresponding 
second-order derivatives of ESCF(V,~). In both cases the differences amount to 
less than 0.2 per cent of the total value of a given quantity. 

According to the discussion presented in Section 2 the main attention has been 
paid to the optimization of those atomic functions which, by simple perturbation 
theory arguments, are expected to make the dominant contribution to the 
first-order perturbed CHF orbitals. No optimization of the d-type GTO's has 
been attempted for the fluorine atom. Above all the corresponding orbital 
exponents have already been selected [25] for the calculation of quadrupole 
polarizabilities. Moreover, they describe the first-order field-gradient perturba- 
tion of the s-type functions. The latter are not expected to be highly important 
for the calculation of correlation corrections to the quadrupole moment of FH 
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Fig. 2. SCF HF (CHF) calculations of the 
quadrupole polarizability tensor C.~,~ for 
the hydrogen fluoride molecule. Dependence 
of Cx..xx and Cz~,~ on the orbital exponent 
~(fF) of the f-type GTO on F 
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[13, 14]. Hence,  for the present  purpose optimizing the f - type G T O  for F and 
the d - type  G T O  for H appears  to be  sufficient. 

4. Fourth-Order FPT SD-MBPT Calculations of the Quadrupole Moment of 
H2 and FH 

All calculations repor ted  in this section have been per fo rmed  with the 
G T O / C G T O  basis sets for H and F given in Table  1. For both  H2 and F H  the 
experimental  values of the equilibrium bond length (RH~ = 1.4 a.u., RFH = 
1.73288 a.u.) have been assumed. Since the correlation corrections to the SCF H F  
values of the quadrupole m o m e n t  of both  molecules are relatively small, the 
value of the field-gradient strength has been a little decreased compared  to that 
used for the optimization of orbital exponents.  The  calculations for H2 have 
been per formed with V = V~v = 0.002 a.u., while for F H  we used V = V ~  = 
0.003 a.u. 

The S D - M B P T  expansion for correlation corrections to atomic and molecular  
propert ies  has been described and analysed in our previous papers  [12-14]. I t  
consists of all terms which arise due to singly and doubly substituted intermediate 
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states in the correlation energy series and can be written as: 

Osi,-MRzr ,- ,o , O o  so ~, 
. . . .  = ' ~ ' 2  -I- q- Q 4 d  --b Q 4 r ,  ci q-" " " , (6) 

where we use the same notation as in Ref. [13]. It has been found [12-14] that 
the correlation perturbation series (6) truncated at the fourth-order gives a good 
approximation for the total correlation correction to properties of many-electron 
systems. Usually only the first three terms of the expansion (6) are retained 
leading to the following estimate of the property value: 

O Q S D - M B P T  ( 4 )  ~ + ~ S D - M B P T / 4 ~  
= ~,gSCF ~,d . . . .  k ) ,  ( 7 )  

where 

Q s D - M ~ ( a  ~ = O~ + O~, so . . . . .  --, ' - J " O 4 d .  ( 8 )  

D Neglecting the contribution due to the conjoint renormalization term Qar, cj 
follows from the observation that the direct fourth-order contribution due to 
quadruply excited intermediate states is nearly cancelled out by the fourth-order 
renormalization term. However, no such cancellation will occur for systems 
containing less than four electrons. Hence, for the hydrogen molecule it is more 
appropriate to use the complete fourth-order Rayleigh-Schr6dinger perturbation 
theory (SD-RSPT) formula: 

QSD-RSPT(4 ) = SD-RSPT 
Q S C F  q- O . . . .  (4), (9) 

where 

Q S D - R S P T ( A  ] t--~SD-MBPT/A ~ , .~O (10) 
corr \ - - /  ~ t,g corr I'..r / t (,,dr 4r  

and Q4 D represents the total of the fourth-order renormalization term [12-15] 
which can be partitioned into conjoint and disjoint contributions [15, 26]. For 
systems with less than four electrons only conjoint diagrams will contribute to 

D D O4,  i.e. for these systems Q4 ~ = O4r, cj [15, 26, 27]. 

It is also appropriate to mention that Eq. (10) is the fourth-order PT approxima- 
tion for the correlation correction to OSCF in the configuration interaction scheme 
limited to singly and doubly substituted configurations (SD-CI), i.e. 

Q S D - R S P T  (A~ - -  /O  S D ' C I  (A~ 
. . . .  ,,--,' - -  ~ . . . .  ' , ~ / .  ( 1 1 )  

Different terms which contribute to either SD-MBPT or SD-RSPT expansion 
for the correlation energy can be easily obtained from subsequent iterations in 
what is known as the direct CI scheme [28]. This method has also been employed 
in our calculation of the field-gradient-dependent correlation energy contribu- 
tions. 

In order to complete the information about the quality of our calculations let 
us mention that the SCF energies obtained for the GTO/CGTO basis sets of 
Table 1 are equal to -1.132256 a.u. for H2 and -100.065591 a.u. for FH. For 
the hydrogen molecule the fourth-order SD-RSPT correlation energy is 
-0.035817 a.u. and the corresponding SD-CI result amounts to -0.036715 a.u. 
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Table 2. SCF and correlation contributions to the  quad-  
rupole m o m e n t  of H2 and FH. All values in a.u. 

Contr ibut ion a H2 b F H  c 

QSCF 0.4865 1.7422 
QD --0.0282 --0.0015 
Q3 D - 0 . 0 0 9 4  - 0 . 0 2 0 7  
oo 4a - 0 . 0 0 5 0  - 0 . 0 0 3 0  
Q4 D +0.0008 +0.0038 
QSD~MBPT (4) --0.0427 --0.0252 
QcSDr RSPT (4) - 0 . 0 4 1 8  - 0 . 0 2 1 4  

S D - C I  
Qcorr --0.0451 - 0 . 0 2 0 0  

a The  symbol O has the mean ing  of the  molecular  quad-  
rupole m o m e n t  0 which is equal  to the  zz -componen t  of 
the quadrupole  m o m e n t  tensor  with the  x-axis taken along 
the bond. The  nuclear contribution is included in OSCF 
b Calculated with the  origin of the coordinate system at the  
nuclear center  of mass.  Rru f  = 1.4 a.u. 
c Calculated with the  origin of the coordinate system at the 
nuclear center  of mass.  RFH = 1.73288 a.u. 

]E7 SD-MBPT [/I] In the case of FH the fourth-order SD-MBPT scheme results in ~ c o r r  \ - - ,  = 

�9 r'~SD-CI -0.27995 a.u., while the SD-CI approach gwes t~ .... = -0 .26730 a.u., indicat- 
ing a rather important contribution due to disjoint renormalization diagrams. It 
is worth while to note that for FH the fourth-order renormalization term E4~ is 
equal to +0.01370 a.u., and hence, g, SO-CI ~SD-C~a~ 

~ c o r r  ~ ~ c o r r  \ ~  ] �9 

Different contributions to the quadrupole moment (0 = 0zz) of H2 and FH and 
estimates of the total correlation correction to the corresponding SCF values 
are presented in Table 2. All data reported in this table have been computed 
by the numerical differentiation of the field-gradient-dependent energy values 
[22]. For the given value of the field-gradient strength V-- V,~ the first-order 
derivatives follow from the energy values E ( - V )  and E(+  V). The accuracy of 
this numerical procedure for the SCF HF method has already been discussed in 
Sect. 3. Since in our final MBPT calculations the values of V are even smaller 
than those employed for the optimization of orbital exponents, the difference 
between the SCF values for the quadrupole moment calculated as the energy 
derivative and those obtained by the direct application of the Hellmann-Feynman 
theorem has been made less than 0.0005 a.u. 

Some check on the numerical accuracy of the calculated correlation corrections 
to the quadrupole moment can be obtained for the hydrogen molecule. In this 
particular case the SD-CI method is equivalent to a full CI. Hence, the Hellmann- 
Feynman theorem is satisfied [22] and the correlated value of the H2 quadrupole 
moment computed as the first-order derivative of the SD-CI energy should be 
equal to the corresponding average value of the quadrupole moment operator. 
Indeed, the two values differ only by 0.0004 a.u., indicating again a very high 
accuracy of the numerical differentiation scheme employed in this paper. 
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Obviously, the Hellmann-Feynman theorem is not satisfied for the SD-CI wave 
function for FH. In this case the quadrupole moment calculated as the average 
value of the quadrupole moment operator is equal to 1.7197 a.u. and according 
to the data of Table 2 is by 0.0025 a.u. smaller than the corresponding energy 
derivative. Hence, the total contribution of what is known as the selfconsistency 
effects [22], which are completely neglected when applying the Hellmann- 
Feynman theorem to limited CI functions, can be estimated as equal to about 
-0.0025 a.u. (relative to the SD-CI energy derivative). 

Computing the SD-CI property values via the differentiation of the perturbation 
dependent SD-CI energy represents the most legitimate procedure within 
the SD-CI approximation [22]. However, one should also remember 
that the property values calculated in this way still suffer from what is 
known as the erratic treatment of unlinked clusters [38, 39]. It has been shown 
[39] that the unlinked clusters can make a rather important contribution to the 
SD-CI values of properties and that the latter need to be corrected accordingly. 
Amos [32] has recently suggested that there may be some cancellation between 
the unwanted contributions due to unlinked clusters and the self-consistency 
effects. If so, the SD-CI values obtained directly from the Hellmann-Feynman 
theorem can be fairly close to the CHF-based SD-MBPT results. This suggestion 
appears to be confirmed by the present data. The total of the unlinked contribu- 

Q4r. According to our calculations tions can be estimated from the disjoint part of o 
for FH the corresponding contribution is equal to 0.0020 a.u. and leads to the 
estimate of the corrected SD-CI value of the quadrupole moment equal to 
1.7202 a.u., which is relatively close to both the fourth-order SD-CI result and 
the SD-CI value obtained from the Hellmann-Feynman theorem. 

The final results of our quadrupole moment calculations are given in Table 3. 
They are compared with other theoretical results and with the experimental 
data. The comparison with the experimental values of the quadrupole moment 
is to some extent limited since the corresponding rovibrational corrections have 
not been taken into account in our calculations. However, they can be safely 
estimated from the existing data of other authors [32-34]. It can be seen from 
the results presented in Table 3 that our correlated values of quadrupole moments 
of H2 and FH are very close to the corresponding estimates obtained from the 
experimental data. The smallness of the correlation contribution does not allow 
for definite conclusions concerning the superiority of the SD-MBPT scheme 
compared to other methods considered in this paper. However, the CHF-based 
SD-MBPT values appear to have been obtained by using the most sophisticated 
computational procedure. Above all they do not suffer from the erratic treatment 
of unlinked clusters. They also take full advantage of the variation optimization 
of the perturbed SCF orbitals. This is definitely the best one can do within the 
truncated MBPT expansion which is additionally limited to singly and doubly 
substituted intermediate states. 

The appropriateness of the fourth-order CHF-based SD-MBPT approach for 
the calculation of properties of many-electron systems is based on the assumption 
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Table 3. Molecular quadrupole moments. Comparison of different theoreti- 
cal and experimental results for Hz and FH. All values in a.u. a 

79 

Method H2 FH 

This work 
SCF 0.4865 
SD-MBPT(4) b 0.4438 
SD-RSPT(4) c 0.4447 
SD-CI 0.4414 

Reference results 
SCF 

MC SCF 
SD-CI 
Exact 
Experimental 

1.7422 
1.7170 
1.7206 
1.7222 

0.493 d 1.733 ~ 
0.4815 [31] 1.732 [37] 

1.7555 [32] 
1.6865 [33] 
1.7254 [32] 

0.457 [34] 
0.460 + 0.021 f 1.75 • 0.02 [35] 
(0.440+0.021) g (1.72+0.02) h 

a For the geometry data and related information see footnotes to Table 2. 
The calculated values do not include rovibrational corrections. Conversion 
factor: 1 a.u. of quadrupole moment = 1.34491 x 10 -26 e.s.u. = 4.4865 • 
1040 cm 2 

b The fourth-order SD-MBPT result 
c The fourth order SD-RSPT result 
d Calculated from the accurate SCF wave function of Kotos and Roothaan 
[29] 
e Results of accurate numerical SCF calculations of McCullough [30] 
f Taken from Ref. [36] 
g Estimated vibrationless value according to the data of Ref. [34] 
h Estimated vibrationless value. See Ref. [32] 

that  the  obse rved  cancel la t ions  b e t w e e n  Q4r and the di rect  f o u r t h - o r d e r  cont r ibu-  

t ion involv ing  quad rup ly  exci ted  i n t e r m e d i a t e  states [3] has a m o r e  genera l  

character .  M o r e o v e r ,  the  S D - M B P T  approach  assumes also that  the  con t r ibu t ion  

due  to tr iply exci ted  i n t e rmed ia t e  states is negligible.  B o t h  these  assumpt ions  

n e e d  to be  careful ly  checked .  A l so  the  h igher  o rde r  t e rms  in the  cor re la t ion  

pe r t u rba t i on  series can be  of some  impor tance .  Calcula t ions  in t ended  to clarify 

the  a b o v e - m e n t i o n e d  uncer ta in t ies  are in progress  [40]. 

5. Estimates of the Quadrupole Polarizability Tensor Components for H2 and 
FH 

It  is obv ious  that  accord ing  to the  cr i ter ia  discussed in Sect.  2 the  G T O / C G T O  

basis sets e m p l o y e d  in this s tudy are not  app rop r i a t e  for  highly accura te  calcula-  

t ions of  the  q u a d r u p o l e  polar izabi l i ty  tensor .  H o w e v e r ,  the  da ta  conce rn ing  the  

c o m p o n e n t s  of the  q u a d r u p o l e  polar izabi l i ty  t ensor  are ra ther  scarce.  Since they  

c o m e  out  as a by -p roduc t  of our  q u a d r u p o l e  m o m e n t  calculat ions,  it appears  

wor th  whi le  to p resen t  t h e m  as well.  T h e  co r re spond ing  da ta  are  g iven in Tab l e  
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Table 4. Components of the quadrupole polarizability tensor for H 2 and 
FH. Comparison of different theoretical results. All values in a.u. ~ 

Method Cx .... Cx .... Cz .... 

H2 
This work 

SCF 4.58 4.23 5.92 
SD-RSPT(4) 4.45 4.22 5.97 
SD-CI 4.44 4.22 5.97 

Reference results 
SCF [31] - -  - -  4.7 
Sum-over -states [41 ] 4.94 4.26 5.93 

[42] 5.08 4.28 6.00 
[42] 4.89 3.97 5.69 

FH 
This work 

SCF 5.46 4.21 7.31 
SD-MBPT(4) 6.40 4.97 8.40 
SD-RSPT(4) 6.14 4.80 8.08 
SD-CI 6.14 4.75 8.07 

Reference results 
SCF [37] - -  - -  5.4 
Variation-perturbation b 4.4 3.3 5.7 

a For the geometry data and related information see footnote a to Table 2. 
The quadrupole polarizability tensor is defined according to Buckingham 
[1,23]. Units for the quadrupole polarizability: l a.u.=0.46170• 
10-61 C 2 m 2 j-1 = 0.041496 ~s 
b Calculations by using the Kirkwood variation-perturbation method in the 
SCF approximation [23, 43] 

4 and  compared  with o ther  calculat ions.  In  most  cases our  SCF H F  and  corre la ted 

results for C,,~,.~ [1] are larger t han  the cor responding  results r epor ted  by o ther  
authors .  However ,  for the a b o v e - m e n t i o n e d  reasons  one  should  no t  make  definite 
conclus ions  conce rn ing  their  super ior i ty  in compar i son  with o ther  calculat ions.  
Nonetheless ,  for the F H  molecule  the p resen t  S D - M B P T  results are, to our  best  
knowledge ,  the on ly  avai lable  data  which include the corre la t ion  effects. 

Moreover ,  let us also po in t  out  that  the e lec t ron  corre la t ion  con t r ibu t ion  to 

C.~. ,~ appears  to be  by no  means  negligible.  For  all c o m p o n e n t s  of the quad-  
rupole  polar izabi l i ty  tensor  of F H  this con t r ibu t ion  a moun t s  to more  than  ten  
per  cent  of the co r respond ing  SCF values. Hence ,  the inc lus ion  of the e lec t ron  
corre la t ion  effects in accurate  calculat ions of quad rupo le  polarizabil i t ies  is at 
least as necessary as in the case of the dipole  polar izabi l i ty  tensor  [2-7,  12-14] .  
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